Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k.

نویسندگان

  • Yan Liu
  • Angela Porta
  • Xiaorong Peng
  • Kristen Gengaro
  • Earlene B Cunningham
  • Hong Li
  • Luis A Dominguez
  • Teresita Bellido
  • Sylvia Christakos
چکیده

UNLABELLED This study show for the first time that calbindin-D28k can prevent glucocorticoid-induced bone cell death. The anti-apoptotic effect of calbindin-D28k involves inhibition of glucocorticoid induced caspase 3 activation as well as ERK activation. INTRODUCTION Recent studies have indicated that deleterious effects of glucocorticoids on bone involve increased apoptosis of osteocytes and osteoblasts. Because the calcium-binding protein calbindin-D28k has been reported to be anti-apoptotic in different cell types and in response to a variety of insults, we investigated whether calbindin-D28k could protect against glucocorticoid-induced cell death in bone cells. MATERIALS AND METHODS Apoptosis was induced by addition of dexamethasone (dex; 10-6 M) for 6 h to MLO-Y4 osteocytic cells as well as to osteoblastic cells. Apoptosis percentage was determined by examining the nuclear morphology of transfected cells. Caspase 3 activity was evaluated in bone cells and in vitro. SELDI mass spectrometry (MS) was used to examine calbindin-D28k-caspase 3 interaction. Phosphorylation of calbindin-D28k was examined by 32P incorporation as well as by MALDI-TOF MS. ERK activation was determined by Western blot. RESULTS The pro-apoptotic effect of dex in MLO-Y4 cells was completely inhibited in cells transfected with calbindin-D28k cDNA (5.6% apoptosis in calbindin-D28k transfected cells compared with 16.2% apoptosis in vector-transfected cells, p < 0.05). Similar results were observed in osteoblastic cells. We found that dex-induced apoptosis in bone cells was accompanied by an increase in caspase 3 activity. This increase in caspase 3 activity was inhibited in the presence of calbindin-D28k. In vitro assays indicated a concentration-dependent inhibition of caspase 3 by calbindin-D28k (Ki = 0.22 microM). Calbindin-D28k was found to inhibit caspase 3 specifically because the activity of other caspases was unaffected by calbindin-D28k. The anti-apoptotic effect of calbindin-D28k in response to dex was also reproducibly associated with an increase in the phosphorylation of ERK 1 and 2, suggesting that calbindin-D28k affects more than one signal in the glucocorticoid-induced apoptotic pathway. CONCLUSION Calbindin-D28k, a natural non-oncogenic protein, could be an important target in the therapeutic intervention of glucocorticoid-induced osteoporosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calbindin-D28K Prevents Staurosporin-induced Bax Cleavage and Membrane Permeabilization

Calbindin-D28K has been implicated in the regulation of neuronal cell death. Previously, we demonstrated that calbindin-D28K prevents staurosporine (STS)-induced caspase activation and subsequent apoptosis in a neuronal cell line. However, the role of calbindin-D28K in STS-induced activation of calpain and necrotic cell death was not identified. Staurosporine induced the elevation of intracellu...

متن کامل

Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin.

Glucocorticoid-induced osteoporosis may be due, in part, to increased apoptosis of osteocytes and osteoblasts, and bisphosphonates (BPs) are effective in the management of this condition. We have tested the hypothesis that BPs suppress apoptosis in these cell types. Etidronate, alendronate, pamidronate, olpadronate, or amino-olpadronate (IG9402, a bisphosphonate that lacks antiresorptive activi...

متن کامل

Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone.

Glucocorticoid-induced bone disease is characterized by decreased bone formation and in situ death of isolated segments of bone (osteonecrosis) suggesting that glucocorticoid excess, the third most common cause of osteoporosis, may affect the birth or death rate of bone cells, thus reducing their numbers. To test this hypothesis, we administered prednisolone to 7-mo-old mice for 27 d and found ...

متن کامل

Calbindin-D28K prevents drug-induced dopaminergic neuronal death by inhibiting caspase and calpain activity.

Calbindin-D28K protects against apoptotic and necrotic cell death; these effects have been attributed to its ability to buffer calcium. In this study, we investigated the mechanisms underlying the neuroprotective effects of calbindin-D28K in staurosporine (STS)-induced apoptosis and 1-methyl-4-phenylpyridinium (MPP(+))-induced necrosis. Treatment of the dopaminergic neuronal cell line MN9D with...

متن کامل

HPLC assay with ultraviolet detection for therapeutic drug monitoring of sirolimus.

clinical practice. Clin Chem Lab Med 1998;36:163–8. 7. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. J Clin Invest 1998;102:274–82. 8. Dempster DW. Bone histomorphometry in glucocorticoid-induced osteoporosis. J Bone Miner Res 1989;4:137–41. 9. Saag KG, Emkey R, Schnitzer TJ, Brown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2004